Student Name:

Student ID Number:

\qquad Time of the Lecture: \qquad

1. Do not open this exam until you are told to begin.
2. No Questions are allowed during the examination.
3. This exam has $\mathbf{6}$ plus one bonus questions.
4. Do not separate the pages of the exam.
5. Scientific calculator are allowed but cannot be shared. Graphing Calculators are not allowed.
6. Turn off all cell phones and remove all headphones.
7. Take off your cap.
8. No communication of any kind.

Student signature: \qquad

Good Luck

Problem One

Find the derivatives of the following functions (do not simplify):

1. $f(x)=2^{x} x^{2}+\ln \left(x^{2}\right)+2$
2. $f(\theta)=\sqrt{1-\tan \left(\theta^{2}-1\right)}$
3. $\int_{0}^{1} x^{2} \sqrt{4-x} d x$
4. $\int_{0}^{\frac{\pi}{2}} \sin (2 x)-\sqrt{e} d x$

Problem Three
a. Use the second derivative test to find all local max and local min for the function

$$
f(x)=x^{3}-2 x^{2}+x+2
$$

b. Find the absolute Max and absolute Min of f on the interval $[-2,2]$

Use Riemann sum to find

$$
\int_{-4}^{0} x-2 d x
$$

use an infinite number of rectangles and the right endpoints rectangles.

You may use the following formulas:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Given $f(x)=\frac{x}{(x+1)^{2}}$ and $f^{\prime}(x)=\frac{1-x}{(x+1)^{3}} \quad f^{\prime \prime}(x)=\frac{2(x-2)}{(x+1)^{4}}$
Find
a. The domain of f
b. x-and y-intercepts
c. The vertical and horizontal asymptotes
d. The Interval(s) on which $f(x)$ is increasing and decreasing
e. The local max/min of $f(x)$, if any values (if any);
f. Intervals on which $f(x)$ is concave upward and downward
g. Any inflection points
h. Sketch the graph of f (label clearly all intercepts, critical points and inflection points)

A rectangle is placed inside the region bounded by the parabola $y=9-x^{2}$ and the x-axis (see figure).

a. Suppose the corner A has coordinates (x, y). Express the area of the rectangle in terms of x and y.
b. Find the dimensions of the rectangle which has the maximum area.

Write the following limit as a definite integral

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2\left(\frac{i}{n}\right)^{2}+\frac{i}{n}\right)\left(\frac{1}{n}\right)
$$

